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Chaotic proton dynamics in the hydrogen bond
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The motion of a proton in a double-well potential created by the potentials of two heavy ions in a
molecular chain is considered. The topology of the potential changes depending on the distance between
the molecules. Both forms, double well and single well, are possible. Individual chaotic proton motion
is triggered by the oscillations of the lattice. Depending on the system parameters, both the one-well and
the cross-well attractors can be either periodic or chaotic. This has some interesting consequences for
the interpretation and understanding of propagation of ionic defects in hydrogen-bonded chains in the
presence of external oscillating fields. A frequency-locked propagating kink is found.

PACS number(s): 05.45.+b, 03.40.Kf, 05.60.+w, 87.22.Fy

I. INTRODUCTION

The transport of energy and charge along one-
dimensional chains of hydrogen bonds is an extremely
important problem in bioenergetic and solid-state situa-
tions. The molecular systems that we study in the
present paper are long periodic chains of hydrogen bonds
forming channels for the proton transport. The proton
transfer is carried out along the hydrogen bonds between
various sidegroups having, e.g., hydroxyl, carboxyl, ami-
no, or amide groups and also tightly bound water mole-
cules which can be involved in the chain. One-
dimensional chains of hydrogen bonds also exist in al-
cohols, carbohydrates, imidazole, etc. Here, we do not
care too much about the details of the chain but concen-
trate on one general aspect: Protonic conductivity of
such systems in the direction of the hydrogen-bonded
chains in about 10° times greater than in the perpendicu-
lar directions.

In the past the proton motion in a molecular chain was
investigated by many authors with many interesting re-
sults. (For a comprehensive review see, for example, Ref.
[1].) Most of the authors emphasized the collective as-
pect when calculating the intrabond proton transfer asso-
ciated with ionic-defect propagation. They found that
the structure and dynamics of the ionic defects in
hydrogen-bonded one-dimensional systems can be of soli-
ton type [2—-5]. A one-component model leads to stable
propagating kink or antikink solutions for the proton dis-
placements. These solutions, when interpreted from the
physical point of view, describe very well-ordered
motions of the protons in the external potentials. In
one-component models, each proton interacts with its
neighbors (e.g., through harmonic forces) and moves in
an externally imposed on-site potential which has (at
least) two minima with equal energy and can be thought
of as arising from a rigid-background lattice.

Already at the early stages of those theories it was
correctly argued that the one-component models have to
be generalized by taking into account a soft-background
lattice through the motion of the surrounding heavy ions,
vibrations of the sublattices, etc. Then, e.g., within a

47

two-component model, the interaction between the rela-
tive displacements of protons and heavy ions was taken
into account, and again (now two-component) solitary-
wave solutions were found and discussed [3,6—10]. The
second component introduces also a feature that has not
been considered so far. In contrast to the rigid-
background approximation, oscillations of the sublattice
can occur, and besides the usual (stationary) two-
component solitary-wave solutions, time-dependent (trig-
gered) collective motions might also be possible. The in-
vestigation of such driven solitary waves is extremely im-
portant since the ubiquitous damping will stop the propa-
gation of (quasistationary) two-component solitary waves
and lead to an extinction of that type of collective trans-
port. Thus we should also look for other types of collec-
tive transport. However, when taking into account a
driven proton motion, we should be aware of a possible
destruction of ordered transport due to chaos. The inves-
tigation of that aspect is the main intent of the present
paper. Let us elucidate the idea by starting from models
representing the present state of the art in nonlinear
theory of proton motion in the hydrogen bond.

Up until now, various groups worked on generaliza-
tions of two-component models. For example, a two-
sublattice model for the ionic defects in hydrogen-bonded
chains was recently considered in [10] and [11]. It con-
tains many aspects of previous models and starts from
the Hamiltonian
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This model describes a diatomic chain with two masses m
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and M, where m is the proton mass and M is the mass of
the heavy ion. Furthermore, g, =y, /I is the dimension-
less displacement of the proton in the nth hydrogen
bridge from the middle of the nth and (rn +1)th heavy
ions, under the assumption that the latter are in their
equilibrium positions. The Q, =Y, /I are the dimension-
less displacements of the heavy ions from their equilibri-
um positions, and [ is the lattice spacing for both sublat-
tices. The velocities ¢y and vy result from the coopera-
tive nature of the hydrogen bonding and correspond to
the acoustic modes in the light and heavy sublattices, re-
spectively. The potential U(g,,0,,0,+) is an on-site

d’q, _ ¢}
dr? =—l§_(qn+l—2qn+qn-—l)
__1 -—a—U(q 0., Cn+1) > (1.2)
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proton potential originating, e.g., from the Morse poten- 1.3)
tials of the heavy ions. Therefore, it also depends on the Introducing the new coordinates
distances @, +,—Q, in the heavy-ion sublattice and
moves together with the ions. The potential V;(Q,) is a u,=q,—R, , (1.4)
single-well substrate potential for the heavy-ion sublattice R, =10, +0. . (1.5)
which takes into account the environment of the noo2ien D ¥nt1lo )
hydrogen-bonded chain. Pn=0ns1—Cn » (1.6)
The canonical equations following from the Hamiltoni- "
an (1.1) are we can rewrite (1.2) and (1.3) as
J
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Here, we assumed V; to be a quadratic potential and have
introduced the notations
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At this stage, three directions for proceeding are possible.
In the first (traditional) one, the possible (stationary)
solitary-wave solutions of (1.7)-(1.9) are analyzed. We
shall come back to this point, and the corresponding
open problems, in the final part of the paper. Here, we
want to start with the second approach, i.e., the individu-
al point of view for the motion. This will enable us to ap-
preciate the third direction, i.e., the time-dependent col-
lective one, with novel aspects of solitary-wave transport
by time-dependent solutions.

For the individual point of view let us simplify Egs.
(1.7)-(1.9) by neglecting the dispersive contributions (by
formally setting vy=c,=0) and ignoring higher-order
terms in the mass ratio u. Then we obtain

dzu,, aU(un! n)

~o? ,,——J—-———e—— , (1.12)
dr? mi? ou,
d2
dt; ~—wlp, , (1.13)
d’R,
e ~—w’R, , (1.14)

i.e., the motion of the proton in the potential U and un-
der the influence of (external) oscillations of the heavy-
ion sublattice. In the following we shall, for the purpose
of simplicity, neglect the effects due to the motion of the
mass centers R, (by setting R, =0). Then the two cou-
pled equations (1.12) and (1.13) remain to be solved.
From this individual point of view, each proton is decou-
pled from the others but moves under the influence of the
nonlinear potential U. Due to the huge inertia of the
heavy-ion sublattice, we can assume that the oscillations
in p, (and, for the more general case, the R, oscillations
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also) persist for a long time and act like an external driver
in (1.12).

This situation reminds us very strongly of the Duffing
oscillator [when the obvious damping of the proton
motion is also included in (1.12)]. Although our actual
problem is different from the Duffing oscillator, one can
expect that here also interesting and perhaps exotic
effects due to the nonlinear dynamics occur. (We should
remind the reader that even for the Duffing oscillator not
all phenomena are understood. An excellent review of
the present state of the art can be found, e.g., in a most
recent paper by Ueda et al. [12].) Here we shall concen-
trate on two aspects of the individual proton motion in
the on-site potential of heavy ions: (i) the intersection of
stable and unstable manifolds for the present oscillator
problem with topological changes in the potential caused
by heavy sublattice oscillations and (ii) the proton escape
from a potential well and the jump from one-well to
cross-well motions. We expect that the one-well and
cross-well attractors can be either periodic or chaotic,
and we want to determine the parameter values for the
various regions. This is important since the problem of
stable (collective) solitary-wave motion in the region of
chaotic individual motion has, to our knowledge, so far
been neither attacked nor solved.

To study in a nontraditional manner the collective pro-
ton dynamics in the basic equations of motion (1.7)—(1.9)
we assume ¢, 70 and simplify them as follows. As in the
case of the individual proton motion, we neglect the
effects due to the inertia of the heavy ions (by putting for-
mally u=0). Therefore, the latter may be considered as
external drivers. We further assume that at any instant
of time the heavy ions move opposite to each other with
the same speeds. In other words, we take into account
only the optical mode of the heavy-ion sublattice. In this
case, it is obvious that the mass centers are immobile, i.e.,
R,=0and p,_=p,+,- Thus, Eq. (1.12) is transformed
into

d’u, c¢§ 13
dt? zTZG(un*I—l_Q’un+_un+1)‘m aun

Ulu,,p,) -

(1.15)

The p,, oscillations will be considered as external drivers.
We shall then investigate whether a frequency-locked
kink propagation is possible.

In this paper we consider both the dissipative case of a
periodically parameter-forced second-order Morse oscil-
lator (individual proton motion) and the stationary as
well as nonstationary soliton models (for collective pro-
ton motion). We want to find out whether, similar to the
individual results, a resonant collective motion also ex-
ists. The manuscript is organized as follows: In Sec. II
the individual aspects are investigated. First, the equa-
tions of motion of a proton in a parameter-dependent
double-well potential are formulated. Then the equations
are solved numerically. The numerical findings are com-
pared with analytical estimates by Melnikov theory. In
Sec. III the collective aspects are considered by discuss-
ing simplified soliton models and their solutions. A

frequency-locked kink mode is detected. The paper is
concluded by a short summary and outlook.

II. INDIVIDUAL PROTON DYNAMICS

A. Equation of motion

Let us consider two molecules (or heavy ions) where
the equilibrium distance between them is denoted by /.
Each of these molecules creates a pair potential V' (r) for
some light ion (say, proton) of the topology shown in Fig.
1. In the following we use r as the distance parameter.
In an isolated molecule the potential minimum is at r,.
Consider now two neighboring molecules (heavy ions) of
the same type. Superimposing the two potentials V(r)
created by the two molecules, we obtain a double poten-
tial U(r). When the heavy ions are in their equilibrium
positions (or close to them), the two ion-proton potentials
form a double-well potential for the common proton.
This scenario is motivated by the well-known phenomena
in hydrogen-bonded chains. Here, we take into account
that the heavy ions are in general not stationary. They
may be oscillating or forced to move close to each other,
and at some critical distance the topology of the total po-
tential U (r) might change, e.g., from the double-well po-
tential to a potential with a single minimum. It is clear
that the double-well potential U(r) depends on the rela-
tive displacement of the heavy ions. Let us assume the
following notations (see Fig. 2). The variable p denotes
the deviation of the distance of the heavy ions from the
equilibrium value; u is the dimensionless (all lengths are
in units of / which is the equilibrium distance between
two heavy ions in the lattice) displacement of the proton
from the middle between the heavy ions; and the equilib-
rium positions tu, depend on the relative displacement
p, and uy(p=0) is denoted by gq.

If the function V(r) is given for 0 <r < o, the function
U (u,p) can be constructed as the following sum:

Ulu,p)=V %ﬂﬂ +v %p——u

2

(2.1)

Then the equilibrium distances uy=uy(p) will be found
as the nontrivial roots of the equation

V'(14p)/2+ug)=V'(1+p) /2—uq) ,

Viny

proton
o

To r
heavy ion
FIG. 1. Potential of a molecule (heavy ion) as a function of

distance. The potential has a single minimum where a proton
can find its equilibrium position.
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U(r‘,pv

heavy ion heavy ion

1+p

FIG. 2. Notations for a double-well potential created from
the two Morse potentials.

where the prime denotes the derivative with respect to
the argument. In principle, the function ¥V (r), 0<r < w0,
may be any of the standard potentials (Morse, Lennard-
Jones, etc.), but the situation can be generalized to in-
clude any symmetric function U(u,p) with a correct
physical behavior in both the variables # and p. For
demonstration, we shall present in the following analytic
and numerical calculations for the case of two Morse po-
tentials. Each one of them is of the form

—blr—ry)

V(r)=Dy[1—e 2, (2.2)

with positive constants D, (dissociation energy) and b
(potential parameter). In this case, a straightforward cal-
culation leads to

D
Ulu,p)=—{la—cosh(bu)e ~**/ 2Pt {(1—e ")} ,

(2.3)
where
a=cosh(bg,)=1exp[b(1—r,)] .

For p=0, the function (2.3) has two minima only if the
parameter b satisfies the inequality

In2

1
77 To

b>

, ro<Li. (2.4)

In a general case, when p70, the positions of the minima
*u, also can be found analytically.
At

pe=2(In2/b+r,)—1<0,

the double-well potential is transformed to the single-well
form. For p<p., the potential remains of single-well
form.

In order to be close to the well-known Duffing oscilla-
tor, we can introduce the potential (normalized to be of
the harmonic form for small 4 when p=0)

U-— —D—O(a —1)?

az‘

2
= a 1
Ulu,p)=————

P Do 2b2@—1)

For 1 <a <4 the potential (2.5) has the double-well form.

For the realistic parameter values, a indeed lies in this in-

terval.

Introducing

(2.5)

2Dyb%(a?—1)

r=(a+1) "ot =at, wi= 5 , (2.6)
a‘ml
we find the equation of motion
d’u | 3 =
—U(u,p)=0. 2.7
e + 3 (u,p) (2.7)

Equation (2.7) is in suitable form for mathematical con-
siderations. For applications we take Dy=5.11 eV (w?-
ter molecule dissociation H,O—OH™ +HY), 1=2.76 A,
rol =0.96 A,

b=(2.64 A"1)I=7.298 ,

leading to a=1.518 and @=622.4 THz. Here we have
used the proton mass

m=1.6726X10"2" kg .

The oscillations of the heavy ions we assume to be har-
monic, i.e., of the form

p(T)=pesin(Q7) . (2.8)

In general, a damping term for the proton also has to be
included in (2.7). Therefore, we may generalize (2.7) to

du

d*u d
L8 L
dr

dr? EU(u,p)——— Y
In the adiabatic limit the proton moves much more rap-
idly than the heavy ions (for y =0). Therefore, in this
limit for any instant of time the displacement p may be
considered to be strictly constant. Then Eq. (2.7) [with
p=const] can be integrated by using standard techniques.
But the nearly adiabatic case with p¥const and y >0
seems to be more interesting and realistic. In this latter
case we investigate whether we can have stochastic be-
havior of the proton if the amplitude p, exceeds a critical
value |p..;|. To attack this problem, we solve numerical-
ly Eq. (2.9) with p=psin(Q7). Here, e.g., y =0.1 is used
for a damping on the 7 time scale, and the dimensionless
frequency () for the heavy-ion oscillations follows from
the following considerations: The positions of the heavy
ions (relative to their equilibrium positions) are only in
the simplest approximation described by (2.8). In gen-
eral, the motion of the heavy ions is influenced (despite
the hydrogen bond) by a harmonic bonding (leading to
acoustic modes) and the substrate potential V; (leading to
optical modes). Then the motion of the heavy ions fol-
lows from the Hamiltonian

(2.9)

2

1 |4dQ 1|V ?
=72 2 n 1120 — 2
H, 1M§ S| [ty T @en—en
+-L v (2.10)
Mz )

This part of the Hamiltonian has been already presented
in Sec. I. The substrate potential leads to a characteristic
(linear) frequency ;. As has been discussed in the Intro-
duction, the approximation (2.8) follows from (2.10) when
dispersion and nonlinear effects are neglected. In the
nearly adiabatic limit, w; <<® holds because of m << M,
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and therefore as a typical value for , we shall use
0=0.25in (2.8).

B. Numerical results

With the help of numerical simulations, we want to
answer two questions: (1) Does chaotic motion exist and
(2) when does the dynamics on the attractor allow cross-
well motion? To tackle the first question, we first investi-
gate numerically the crossing of the stable and unstable
manifolds of the hyperbolic periodic orbit (u,u,)=1(0,0).
We start with 1000 points very close to the unstable orbit
on the unstable (stable) manifold and integrate forward
(backward) in time. The results are shown in Figs.
3(a)-3(c) corresponding to situations before, at, and after
the tangent crossing. In the Hamiltonian case a transver-
sal crossing would be sufficient to produce chaotic
motion, whereas in the dissipative case this need not be
true. In this case, as in the Duffing equation, there exists
a long, very complicated transient until it finally settles

0 0.05 0.1 u 0.15 0.2

FIG. 3. Crossing of the stable and unstable manifolds for
Ppo=0.03, 0.035, 0.04 (from top to bottom, respectively) for fixed
a=1.518,5b=7.298, y=0.1, and 2=0.25.

0.2

0.2 u 0.2
FIG. 4. Basin of attraction (dark for the left) of the stable
periodic orbit after the tangent crossing of the stable and unsta-
ble manifolds: p,=0.04. The other parameter values are the
same as in Fig. 3.
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FIG. 5. Periodic orbits for p,=0.05, 0.1, 0.15 (from top to
bottom, respectively). The other parameters are the same as in
Fig. 3.
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down to one of the stable periodic orbits. One can
demonstrate this by looking at the basin of attraction of
the stable periodic orbit (Fig. 4) after the tangent cross-
ing. The picture shows only little deviations from the un-
driven problem. Crossing of stable and unstable mani-
folds gives only the criterion for the onset of chaotic
motion in the limit of low dissipation when the transient
times are much longer than the time scale of the propaga-
tion.

To answer finally the question of when chaotic motion
starts to exist, we integrate the ordinary differential equa-
tion (2.9) for a bunch of initial conditions, varying the
driving amplitude p, and keeping the damping ¥ fixed.
The procedure is a combination of the “Varosi” interpo-
lation [13] with cell-mapping techniques [14], as exten-
sively done in [15]. This method allows us to effectively
calculate attractors and their basins. An overview of the
results is presented in Table I. As one can easily see, the
critical values of the driving p, are independent of the
damping y. The critical values are roughly given by the
criterion that the double-well potential changes (at a cer-
tain time) to a single-well potential. Those values are
given by po=(2/b)lna, py=0.11 for a=1.518, and
po=0.059 for a=1.25, whereas the numerically obtained
values are p,=0. 10 and py~=~0.05, respectively.

Figures 5(a)—-5(c) depict the stable periodic orbits (con-
tinuously in time) for various values of the driving. Fig-
ures 5(a) and 5(b) show how the orbits approach the
center of the potential well as the driving increases.
When the driving is big enough such that the orbit can
cross the center of the potential well, chaotic motion can
start to exist. Looking again at Table I, one observes that

for «=1.518 and p,=0.15, a stable periodic orbit exists
independent of the damping. This orbit is shown in Fig.
5(c). All these findings have interesting consequences for
the collective motion, as will be discussed in Sec. III.

C. Analytical estimates

Some of the numerical findings can be understood
analytically by Melnikov theory. Using (2.5), we write
the total Hamiltonian as

2

du | | g @.11)

ﬁ:
dr

1
2

We treat the p oscillations as perturbations and expand

U(u,p)=U(u,p=0)

+E;(~£—_—l—){%+cosh(bu )[a—cosh(bu)]} .

(2.12)

Using the representation (u,v =u ), we obtain from (2.11)
and (2.12)

podv 3T
Tdr du |,

——L {(sinh(bu)[a—2cosh(bu)]} , (2.13)
2(a—1)

and the equation of motion can be written as

u=v, (2.14)

TABLE I. Attractors for various values of py, ¥, and a. The values of 2 and b are fixed to 0.25 and 7.298, respectively. P1,P2, ...
correspond to periodic orbits of periods 1,2, ..., “single” denotes that the proton is observed only in one potential well at the stro-
boscopic times, LR ... means that the proton jumps from the left to the right potential well and vice versa, and ‘“cross chaotic”
means that the chaotic attractor connects the left and right halves of the potential well.

a=1.518 a=1.518 a=1.518 a=1.518 a=1.25
Po v=0.1 ¥ =0.05 v =0.01 ¥ =0.001 y=0.1
0.01 P1 single P1 single P1 single P1 single P1 single
0.02 P1 single P1 single P1 single P1 single P1 single
0.03 P1 single P1 single P1 single P1 single P1 single
0.04 P1 single P1 single P1 single P1 single P1 single
0.05 P1 single P1 single P1 single P1 single Cross chaotic
0.06 P1 single P1 single P1 single P1 single P2, LR,...
0.07 P1 single P1 single P1 single P1 single P2, LR,...
0.08 P1 single P1 single P1 single P1 single P1 single
0.09 P1 single P1 single P1 single P1, P3 single P1 single
0.10 P1 single P1 single P1 single P1, P3 single Cross chaotic
0.11 Chaotic, LR, ... Chaotic, LR, ... Cross chaotic Cross chaotic P2, LR,...
0.12 P2, LR,... Chaotic, LR, ... Cross chaotic Cross chaotic P2, LR,...
0.13 Cross chaotic Chaotic, LR, ... Cross chaotic P4, LR P1 single
0.14 P2 single High period LR, ... Cross chaotic Cross chaotic P1 single
0.15 P1 single P1 single P1 single P1 single Cross chaotic
0.16 Chaotic single Cross chaotic Cross chaotic Cross chaotic
0.17 Cross chaotic Cross chaotic Cross chaotic Chaotic single
0.18 P2, LR,... P2, LR,... Cross chaotic
0.19 P2, LR,... Cross chaotic Cross chaotic
0.20 P2, LR,... Cross chaotic Cross chaotic
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a0

(2.15)
du p=0

v= +g,

where the perturbation g follows from (2.9) and (2.13) as

. Po . -
g=—vu —————-———z(a_l){smh(bu)[a 2 cosh(bu)]}

Xsin(Q7) . (2.16)

Next we calculate the homoclinic orbit for the undis-
turbed system (y =0, p=0, g =0) described by the Ham-
iltonian (2.11) for p=0. It is given by the integral

fu du - 1 ,
ug {(a—1)*—[a—cosh(bu)]*}'"? bVa—1 "~
(2.17)

for 0<u <ug, where u is the solution of
172

+

™0 =z =124 1—% —(1—2a) . (2.18)

Introducing the variable z=exp(bu), we can rewrite
(2.17) as

I(z)—I(zf )= fz} (z—1)] —%-}.(ZZ—%)Z—LZZ}I/Z
=—ﬁ : (2.19)
The integral can be performed analytically to yield
z
1(z)=—[2;1n_AHBH&—”BC’C:Z%)(Z) , (220
A+2B +(a—l)m

where 4A=2Va—1, B=Vala—1), C(z)=1—2a+z,
and

D(z)=[—1t+(a—1)z—1z%]""%.

Using (2.20), we can now determine the homoclinic orbit
u=u'? as a function of 7. Then, of course, v@=7 @ jg
also known. It is not necessary to give the explicit ex-
pressions for evaluating the Melnikov integral

M(ry)= f_+°°v(o> Lsinh(bu ©)

2a—1)

X[2cosh(bu®)—a]

X sin( Qr)cos(Qry)—yv'® [d7 .

(2.21)

On the right-hand side of (2.21), the two integrals
I, = @ (0) 24 2.22

1 fo [v"™]dr ( )

and

__ 1 re 0. (0)
12—2(01 l)fo v Psinh(bu '?)
X[2cosh(bu'Q)—alsin(Qr)dr (2.23)

need to be evaluated. A straightforward analysis leads to

2
n=—-2 [ 4 (2.24)
AT ) |2
dz z V4
and
1 Zo a 1
I,=— —at+ &
2 4b(a-—1)f1 zma z2 Z3
X sin A;’ (I(zf ) —1(2)] }dz

(2.25)

An intersection of the unstable and stable manifolds is
predicted by the Melnikov function provided

I,
I,

Po 5

Y

(2.26)

If we insert the parameter values a=1.518, b=7.298
(leading to zo+ =3.8095), and ©2=0.25, we obtain from
(2.26)

% >0.350835 .

(2.27)
This agrees excellently with the result of the numerical
calculation of the crossing of the stable and unstable
manifolds as shown in Figs. 3(a)-3(c). However, when
compared to Table I, we recognize that the Melnikov
value underestimates the chaos threshold by a fairly large
factor. As has been mentioned already, chaos sets in
when the double-well potential changes (at a certain time)
to a single-well potential.

III. COLLECTIVE PROTON DYNAMICS

A. Stationary solitary-wave solutions

As has been mentioned already in the Introduction, the
individual motion of the proton in the potential created
by oscillating heavy ions is only one aspect of the whole
variety contained in the general model (1.7)-(1.9). Now
we briefly mention the other aspect: the existence of sta-
tionary (two-component) solitary-wave solutions. These
solutions can be obtained either analytically, by using
some approximations as described below, or numerically,
by using a steepest-descent minimization scheme [11]. In
this subsection we review the wide and stationary
solitary-wave solutions which can be obtained by stan-
dard techniques.

Since the discrete problem is in general difficult to
solve and allows only numerical evaluations, we apply the
continuum approximation. Introducing the variable
T=cyt /] and the notations Qy=wyl /cy, Q;=w;l/cy,
f=90U /du, g=0U /dp, we obtain, in the case of the po-
tential V;(Q, )=MI*»?Q? /2, the coupled set of nonlinear
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partial differential equations [10,11]
0%u—2u—QIR+(s§j—1)p, +Q3(1+p)f +Q%ug, =0,

(3.1
3%R —s33’R + QIR —Q%u(f +g,)=0, (3.2)
p—s3dip+Qlp—Quf, =0, (3.3)

where the subscript x =n on f and g denotes a derivative
with respect to x. By definition, the stationary solutions
depend on x and T through the variable {=x —sT.
Equations (3.1)-(3.3) admit two-component (stationary)
solitary-wave solutions in some regions of the velocity s
within the interval 0 <s =< 1.

The two-component models are significant generaliza-
tions of the one-component ansatz. In the latter, one
neglects any dynamical influence of the heavy sublattice
on the proton motion. The position of the proton evolves
in this simple case (Q}; =u=p =0) according to

0%u—32u+Qif=0. (3.4)
Let us discuss the case of two Morse potentials,
0 1
=— | —5————(a—cosh(bu))?
du | 2b%a*—1)
1 L .
=————[1sinh(2bu ) —asinh(bu )] . (3.5)
b1 ]
We introduce the new variables y=2bu, t=TQ,,
X =xQ, to rewrite (3.4) in the form
%y —dky+ azl_ sinh(y)—2asinh [ £ ||, (3.6)
which is the double-sinh-Gordon equation. Its kink-

antikink solutions can be obtained directly as

172 be
—st
tanh | —>—> .
2(1_52)1/2 ] ’
(3.7)

y =4 arctanh ‘i

Here, s is the velocity (s <s, means subsonic whereas
s >s, means supersonic velocities; note s;<1). From
(3.7) we conclude that for s <1 subsonic and supersonic
kink and antikink solutions are possible. The kink solu-
tion ([u(*fow)=x=gq,, i.e., the upper sign in (3.7)]
represents a negative ionic defect, while an antikink
[u(£ oo )= Fgq,, i.e., the lower sign in (3.7)] represents a
positive ionic defect. These exact solutions of the one-
component model will now be generalized for the two-
component description of this paper.

For two-component solitary waves, two cases are of in-
terest: (1) ;=0 (the chain is isolated from any environ-
ment) and (2) ;70 (the chain is subjected to influences
of some regular environment with the lattice period !/
equal to the chain spacing). In any case, the proton com-
ponent u =u,; (&) of a resulting (stationary) solitary-wave
solution is a kink (or antikink) satisfying the boundary
conditions u;(+ o )==xq, (or Fgq,). The profile of this
component and the interval of admissible velocities for

the two-component solitary wave crucially depend on the
presence or absence of the external substrate potential for
the heavy ions. If the hydrogen-bonded chain is isolated,
ie., Q,=0, the set of Egs. (3.1)-(3.3) can be treated
analytically, whereas in the case Q;70, the solitary-wave
solutions of these equations can be found only numerical-
1y [11].

For Q; =0, it is sufficient to consider Eq. (3.1) and one
of Egs. (3.2) or (3.3). After integration of Eq. (3.3) we
obtain from Eq. (3.1)

d?u

(=175

1 dp
+ [(s2= 1)+ —(s2—s]
(s ) " (s*—s5) dé
024 g(u,p)=0, (3.8)
dg
which can be trivially integrated again. Therefore, the

set of Egs. (3.3) and (3.4) can be rewritten in the form of
the dynamical equations

du _ . 2y-19 ap _ 2 2y-19
e (1—s7) apd>(u,p), (s*—s5) ”

on the plane (u,p) with “time” &, —o <f< . The
two-dimensional potential ® is defined as

_1 112
D(u,p) > 1+,u s

2
So
1+— | |p?
u]p

+uQ3[U(u,p)—gop] , (3.10)

Eliminating the variable £, we ob-

/

which can be analyzed qualitatively. For instance, one of
the conditions which immediately follows from this equa-
tion is the existence of a gap that is near the velocity
s =s, in the velocity spectrum 0=s < 1.

Now we shall consider two additional (to ; =0) limit-
ing cases when the gap in the velocity spectrum can be
calculated explicitly [11]. In the first approximation, one
assumes that the on-site potential

where g, =g(%£q,,0).
tain

> [0

du

o®
dp

dp _ 1—s

2__ .2
du S o

) (3.11)

U=(a?/Dy){1/[2bXa*—1)]}U

does not depend on the relative displacements p, i.e., the
function U = U(u) keeps its profile while moving with the
heavy ions. In this particular case, the integration of
Egs. (3.9) and (3.11) gives

duk ~

d—é_:ileO[ZU(uk)]l/z (3.12)
and

pr=FuQol20(u )1 /v, (s3—s?) , (3.13)

where
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1 172
= + (3.14)
" 1—s?  s2—52 ]
is the generalization of the “relativistic” factor
y=(1—s%)"12 in the (one-component) Frenkel-

Kontorova (FK) model [16,17], when the heavy ions are
frozen. Formally, the one-component limit can be ob-
tained from (3.12)-(3.14) for u=0. The appearance of a
gap in the solitary-wave velocity spectrum follows from
(3.14). It appears for s, <s <s; , where

) 172

So +/1.

1+pu

1=

, So<s;<l. (3.15)

The kink solution [for the upper signs in (3.8) and (3.9)]
corresponds to the negative ionic defect, while the an-
tikink (for the lower signs) describes the positive ionic de-
fect.

Equation (3.12) for u;(£) has the same form as in the
FK model. It can be integrated giving the well-known
implicit kink solution for any on-site potential U(u).
Then the second component can be immediately calculat-
ed according to the relation (3.13) from which we can
generally conclude that the positive defect (antikink) is
accompanied by a localized rarefaction (p, >0) if
0=s <sy, or compression (p; <0) if s; <s <1, while the
negative defect (kink) is accompanied by a localized
compression for 0 =s <s, or rarefaction for s; <s <1.

In the continuum limit the energy of a positive or nega-
tive ionic defect moving with velocity s can be calculated
directly from the Hamiltonian (1.1). Using (1.4), (1.6),
and (3.12)-(3.14), we obtain

2172 3

71

— 2
E = Qomeg

X [T du . (3.16)
0

It follows from this expression that, at the edges of the

solitary-wave velocity spectrum, E | — co.

The second approximation (note that we are still in the
;=0 case) is opposite to the previous one. Here we
keep the dependence of the on-site potential U on p but
neglect the effects due to the motion of the mass centers
R, . In other words, we assume in the Hamiltonian (1.1)
that g, ~u, [see Eq. (1.4)] and set

ﬁ(qn’Qn’Qn+1):(7(un,pn) .

Then we get the following pair of difference-differential
equations:

d’u, N
e =u, 1~ 2u,tu, —Qf, , (3.17)
2
2;; =55(Pn 417205 FPn—1)
+pQ3(g, 128, 8, -1) (3.18)
which in the continuum limit take the form
urr ~ g +Q3F =0, (3.19)

pTT_S(Z)pxx =:u'Q(2)gxx . (3.20)

For the waves of a stationary profile, Eq. (3.20) is easily
integrated and we obtain

p=nQ¥s>—s3) 7 [g(u,p)—8o] - (3.21)
In order to solve Eq. (3.21), we should perform some ad-
ditional simplifications—namely, restrict ourselves to
only the linear dependence on p in the on-site potential

Ulu,p)=U(u)+pW(u)+0(p?) , (3.22)

where U(u)=U(u,0) and W(u)=g(u,0). Substituting
(3.22) into Egs. (3.19) and (3.20), we arrive at the model
proposed in [8] and being studied afterwards for different
particular cases [9].

Since the function (3.22) is linear in p, the derivative g
does not depend on this variable, i.e., §=W(u), and
therefore [see Eq. (3.21)]

P =pQ[ W (u ) — W, 1/(s>—s5) (3.23)
and

Zug =40, —2%(_”:2;“ " , (3.24)
where Wy= W(+gq,) and

U,=U0+ S’ff% w —ZK—WO (3.25)

is the effective potential depending on velocity s. Know-
ing the function U(u,p), the potential U, can be calculat-
ed explicitly. For example, for a double-quadratic poten-
tial we can write

Uu)=1Xgo—|ul? and W(u)=(gqo—|ul). (3.26)
The last functions satisfy the simple relation
U(u)=2W?*u) and therefore Eq. (3.24) can be simplified
to the form (3.12) with y, replaced by

1+pQd/4(s>—s3) '
va= 1—s? ’

(3.27)

which becomes y if u=0. Here we have again a gap, but
now it is in the subsonic region, between the points

5, =(s3—uQi/4)'? (3.28)

and sy. As in the first limiting case, this gap also divides
the velocity spectrum into two parts: slow (subsonic) and
fast (supersonic) ones, but the behavior of the function y,
is different from that of the function y,(s). Besides this,
it follows from (3.23) that, contrary to the first approxi-
mation, both the kink and antikink are coupled with a lo-
calized compression (for s <s,) or a localized rarefaction
(for s > s) of the background sublattice.

The soliton energy (in the continuum approximation)
can be also calculated [8] from the Hamiltonian (1.1) by
using (3.23)-(3.25). The calculations are simplified if we
generally put W(u)=[U(u)/2]'/? for all —g,<u <gq, as
it takes place in the particular case (2.22). Then we ob-
tain
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220ymc}

E =3
2 (1—s%,

x [ 0w du . (3.29)
0

Both expressions, (3.16) and (3.29), have the well-known

“relativistic” behavior in the limit u—0.

Furthermore, the kink widths in the vicinities of veloc-
ity values s, and s, tend to infinity. This means that the
effective barrier for the proton transfer becomes very
small and the proton kinks can move, even in those cases
when they are pinned (immobile) in the framework of the
usual FK model (where the heavy ions are assumed to be
frozen). Then we can also conclude that at least near the
velocity values s, and s,, the continuum limit of the
equations of motion was adopted correctly.

The numerical minimization scheme developed in [11]
has confirmed the existence of a gap in the solitary-wave
velocity spectrum for ; =0, but without any additional
approximation. A numerical simulation of the full set of
the basic equations of motion shows (for ;=0) that
stable solitary-wave solutions exist in the region 0=s <s,
and this is in agreement with the analytical results [8],
while the solutions in the region s, <s <1 are generally
unstable (except for a small velocity band).

Now we turn to the second case (;7<0, where no exact
solutions are known. For Q,70 (e.g., Q?=0.1, s3=0.1),
numerical simulations predict that there are no gaps in
the velocity spectrum, but the allowed speed range is
significantly reduced (e.g., to 0 <5 =0.19 for the parame-
ters given above).

We conclude this subsection by a qualitative discussion
of these phenomena. From Eq. (3.3) the forms of the soli-
tons can be predicted. Let us assume that we have a kink
or antikink solution for u with u(§=0)=0 and
uge =1 (§=0)>0 (kink) or u,(§=0) <0 (antikink) where
&=x —sT. Furthermore, the solution for p should be bell
shaped with p[(§=0)=0, py=p(§=0)<0, and
Poce=pee(§=0)>0 for compression, or p(§=0)>0 and
PeelE=0) <O for rarefaction, respectively. In the case of,
e.g., two Morse potentials, the stationary form of Eq.
(3.3) can then be written as

(52”3(2) )Poee= _Q?Po

[ —bpo_ae —bpy/2

u
+0u—%—[e

(a*—1) I

(3.30)

From here the numerical results for 2; =0 can be under-
stood. If |py| << 1, the bracket [ ] on the right-hand side
of (3.30) is negative and a kink (u, > 0) can propagate su-
personically (s >sq) with rarefaction (pg>0, pgg <O).
Subsonic velocities (s <s;) occur for a kink with
compression (py <0, pgge>0). On the other hand, an an-
tikink has just the opposite properties (for Q; =0). Close
to s=s,, this consideration breaks down and a gap can
occur. Obviously, going back to the dynamical equa-
tions, for ;70 the resonance of p is shifted from the res-
onance value s2=s} (in the case Q; =0).

B. Frequency-locked kink propagation

From other systems we know that besides stationary
solitary-wave solutions, time-dependent stable solitary
waves also exist. In this subsection we look for counter-
parts of the latter. Also, in contrast to Sec. III A, we ful-
ly take into account the discreteness effects. Thus, nar-
row solutions are also possible.

The numerical simulations of Sec. II B have shown that
even for reasonable large amplitudes, periodic orbits exist
(P1 single) for which, at the stroboscopic times, a proton
is observed only in one potential well. The question is
whether this stable single-particle motion can trigger a
kink propagation. To answer this question, let us ignore
(for the reason of simplicity) the motion of mass centers
(R, =0) and neglect the effects due to the inertia of the
heavy ions (u =0), meaning that Eq. (1.9) is reduced to

d’p, _v§

dt? 17
The solution of this equation will be inserted into Eq.
(1.7) which, in the present approximation, reads

(pn+l_2pn +pn—1)_w?pn . (331)

d*u, c3
o =7(u,,+,-—2u,,+u,,_1)
2
1 Co 1
+ 3 U= pn =P )= S (332)
(a)
W \/\/ \/\,/ \m/ \/\/ ©=0
* @

v/ W\ W\ e
\/\/ W \/\/ \/\/ W Ty
@, * U
WV A\ WY NS\ e
W \M W \A/ \A/ T=o
@ J * @,

(b) | =0
""""""""""""""""""""""""" T=Q/2
...................... ;

""""" =Q
D

FIG. 6. Transportation mechanism by a kink, displayed dur-
ing one period of the external driver: (a) Schematic plot of the
proton positions in the time-varying potential well for five
different times 7. The left arrow denotes the motion of the pro-
ton at the defect, whereas the asterisk designates the position of
the defect. (b) Kink solutions u,(7) as a function of n for five
different times 7.
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™

FIG. 7. Generation of a kink with small noise in the initial
condition. The lower right distribution in n is for 7=0; later
times are shown progressively to the left.

Next, we introduce the nondimensional time 7 [see Eq.
(2.6)] and consider the optical mode

P (T)=(—1)"pesin(Q7) , (3.33)
which is an exact solution of Eq. (3.31) for
Q= (43 /18" +wl/a? .

Inserting this into Eq. (3.32), we obtain [compare with
Egs. (2.7) or (2.9)]

d?u,
7 oy, +1—2u,tu,_)
— du,
_au,, Ulu,,p,)—v ar (3.34)

Here, as in Eq. (2.9), a phenomenological damping term
v has been introduced. Furthermore, 0y=c¢,/I@, which
can be considered as an adjustable parameter.

Before reporting the frequency-locked solution of the
coupled equations (3.33) and (3.34), let us briefly mention
the limiting case py=0. Then, in the case of two Morse
potentials [see Eq. (3.5)], the kink solution located at site
ng can be written as [compare with Eq. (3.7)]

172
u,,(‘r)=%arctanh + %—;—
172
1| atl
Xtanh 5 ;(2)—_—;2—

FIG. 8. Generation of a kink with larger noise in the initial
condition, compared to that of Fig. 7.

We can take this form, for example, as an initial distribu-
tion for a solution of Egs. (3.33) and (3.34) when p,70.

We have solved Eqgs. (3.33) and (3.34) numerically with
standard leapfrog time stepping. The boundaries were
assumed to be reflective. In Figs. 6—8 typically numeri-
cal results are shown for simulations with 100 protons
and a small 0,=0.3.

First, we present the most interesting result. Corre-
sponding to the “P1 single” motion (above the threshold
for the topology change of the potential U) shown in
Table I, there exists a frequency-locked kink propagation.
The proton transport mechanism is the following: Dur-
ing half a period 7/ of the frequency-locked period P1,
a defect jumps from n, to ny+1. Thus, within a narrow
kink, a unique proton transport occurs. This mechanism
is shown at the times 0, w/2Q, 7w/Q, 37 /28, and 27/Q
[from top to bottom in Figs. 6(a) and 6(b), respectively].
It means that the (anti)kink propagation velocity is deter-
mined by Q in a unique manner. Numerical simulations
show that this frequency-locked kink is quite stable. It
also develops in time if we allow initially for noise, i.e., a
quite random distribution of the protons in the right or
left wells, respectively. A typical run is shown in Fig. 7.
However, when the initial noise is too large, kink-
antikink pairs can also be created, as shown in Fig. 8.
But here, also, in the later stages of the time develop-
ment, the velocities are determined by the frequency-
locked proton motion.

IV. SUMMARY AND OUTLOOK

In this paper we have considered two aspects of the
proton motion in hydrogen-bonded chains: first, the indi-
vidual aspects leading to an oscillator model similar in
form to the well-known Duffing oscillator. In this nonau-
tonomous case, the external frequency appears in a natu-
ral way. Besides chaotic motion, we also found periodic
motion (e.g., P1 single) in the large-amplitude case. This
finding has consequences for the collective motion also:
We can find propagating narrow kinks in the frequency-
locked regime. These kinks seem to be attractors. They
may be even more important than the wide kinks which
were also discussed here. Note that the latter were ob-
tained in the dissipationless case. Introduction of damp-
ing y will eventually stop propagating (quasistationary)
wide kinks and lead to a drastic reduction of their trans-
port. Note that this latter negative effect does not occur
for the frequency-locked kink propagation found here.
Because of their importance for proton transport in
hydrogen-bonded chains, the results for frequency-locked
narrow kink propagation should be further considered in
the future. Two generalizations are possible: First, the
nonlinear dynamics should also be investigated from the
Hamiltonian point of view, i.e., the coupling of the indi-
vidual protons with the heavy ions is, more generally, a
coupled nonlinear oscillator problem which could be also
discussed within an autonomous conservative descrip-
tion. Secondly, the coupling of a kink with an external
wave was here only considered in the short-wavelength
limit of the optical mode. Finite k values and other
modes may lead also to interesting results.
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